Version 1 (modified by 9 years ago) ( diff ) | ,
---|
Ex32.f90
! ! Large Scale Computing ! Stokes Flow in a Cavity ! ex32.f90 ! ! Need Lapack and Blas Libraries ! program StokesFlowInCavity use stokeslet2d implicit none double precision :: t_cost double precision,parameter :: EPSILON = 0.005 ! blob size integer,parameter :: INTGRID = 51 ! # of x-grid lines for internal velocity double precision :: dp,dm integer :: numpdepth integer :: numpwidth integer :: numparticles double precision,dimension(:),allocatable :: loc ! particle location double precision,dimension(:),allocatable :: vel ! particle velocity double precision,dimension(:),allocatable :: foc ! particle force double precision,dimension(:),allocatable :: mat ! 2Nx2N dense matrix double precision,dimension(:),allocatable :: cloc ! array for internal points double precision,dimension(:),allocatable :: cvel; ! array for internal velocity integer :: i,j integer nyg character(len=32) :: arg ! Newer version of Fortran can get commadline arguments call get_command_argument(1,arg) if (len_trim(arg) == 0) then call get_command_argument(0,arg) print *,arg," [Depth of Cavity]" call exit(-1) end if ! get inputed depth read(arg,*) dp ! # of particles in depth numpdepth = int(dp / EPSILON + 0.5) ! # of particles in width numpwidth = int(1.0 / EPSILON + 0.5) ! total # od particles numparticles = numpdepth * 2 + numpwidth * 2 print *,"Total # of Particles=",numparticles ! Allocate Space ! DIM=2 defined by 'stokeslet2d.f90' allocate(loc(numparticles * DIM)) allocate(vel(numparticles * DIM)) allocate(foc(numparticles * DIM)) allocate(mat(numparticles * DIM * numparticles * DIM)) ! set location & velocity of particles (blob) do i = 0, numparticles-1 foc(i * DIM + 1) = 0.d0; foc(i * DIM + 2) = 0.d0; if ((i >= 0) .AND. (i <= numpwidth)) then ! top loc(i * DIM + 1) = -0.5 + EPSILON * dble(i) ! x loc(i * DIM + 2) = 0.d0 ! y vel(i * DIM + 1) = 1.d0 vel(i * DIM + 2) = 0.d0 else if (i <= (numpwidth + numpdepth)) then ! right wall loc(i * DIM + 1) = 0.5 ! x loc(i * DIM + 2) = -EPSILON * dble(i - numpwidth) ! y vel(i * DIM + 1) = 0.d0 vel(i * DIM + 2) = 0.d0 else if (i <= (2 * numpwidth + numpdepth)) then ! bottom loc(i * DIM + 1) = 0.5 - EPSILON * dble(i - (numpwidth + numpdepth))! x loc(i * DIM + 2) = -EPSILON * numpdepth ! y vel(i * DIM + 1) = 0.d0 vel(i * DIM + 2) = 0.d0 else ! left wall loc(i * DIM + 1) = -0.5 ! x loc(i * DIM + 2) = -EPSILON * dble((2 * numpwidth + 2 * numpdepth) - i) ! y vel(i * DIM + 1) = 0.d0 vel(i * DIM + 2) = 0.d0 end if end if end if end do ! make 2Nx2N Matrix dm=t_cost(); call slet2d_mkMatrix(numparticles,loc,EPSILON,mat) print *,"setting matrix ",t_cost(),"(sec)" ! Sovle linear ststem call slet2d_solve(numparticles,mat,vel,foc) !call slet2d_solve_CG(numparticles,mat,vel,foc) print *,"Sovle linear ststem",t_cost(),"(sec)" ! check the solution call slet2d_mkMatrix(numparticles,loc,EPSILON,mat) call check_solution(numparticles,mat,vel,foc) ! deallocate big matrix deallocate(mat) ! out particle (blob) data open(10,FILE='particle.dat') do i = 0, numparticles-1 write(10,'(6e16.8)') loc(i * DIM + 1),loc(i * DIM + 2), & vel(i * DIM + 1),vel(i * DIM + 2), & foc(i * DIM + 1),foc(i * DIM + 2) end do close(10) ! ! compute internal velocity ! nyg = int(EPSILON * dble(numpdepth * (INTGRID - 1))) !nyg = numpdepth * (INTGRID - 1) + 1 allocate(cvel(INTGRID * nyg * DIM)) allocate(cloc(INTGRID * nyg * DIM)) !print *,"Internal Grid",INTGRID,"x",nyg ! setting location do j = 0, nyg - 1 do i = 0,INTGRID - 1 cloc(DIM * (i + INTGRID * j) + 1) = -0.5 + dble(i) / dble(INTGRID - 1) cloc(DIM * (i + INTGRID * j) + 2) = -dble(j) / dble(INTGRID - 1) end do end do ! compute velocities dm=t_cost(); call slet2d_velocity(numparticles, loc, foc, EPSILON, INTGRID * nyg, cloc, cvel) print *,"Compute internal velocity",t_cost(),"(sec)" ! out velocities open(20,FILE='res.dat') do j = 0, nyg - 1 do i = 0, INTGRID - 1 write(20,'(4e16.8)') cloc(DIM * (i + INTGRID * j) + 1), cloc(DIM * (i + INTGRID * j) + 2),& cvel(DIM * (i + INTGRID * j) + 1), cvel(DIM * (i + INTGRID * j) + 2) end do end do close(20) ! free deallocate(cloc) deallocate(cvel) deallocate(loc) deallocate(vel) deallocate(foc) end program StokesFlowInCavity ! for timing double precision function t_cost() real, save :: ptm integer,save :: fl = 0 real :: tm,sec; call cpu_time(tm); if (fl == 0) then ptm = tm end if fl = 1; sec = tm - ptm ptm = tm t_cost = sec return end function t_cost stokeslet2d.f90 ! ! Large Scale Computing ! Stokeslet for 2D ! ! Ricardo Cortez,"The Method of Regularized Stokeslets", ! (2001), SIAM J. Sci. Comput., Vol.23, No.4, pp.1204 ! ! assuming mu = 1 ! module stokeslet2d implicit none parameter DIM=2 REAL, PARAMETER :: PI = 3.141592653589793238462643383279502884197169399375 contains ! make Matrix subroutine slet2d_mkMatrix(np,loc,ep,mat) integer :: np double precision, dimension(:), allocatable :: loc,mat double precision :: ep integer :: i,j double precision :: r double precision :: dx,dy double precision tr1,tr2 !zeros mat do i = 1, DIM * DIM * np * np mat(i) = 0.d0 end do ! make mat ! Because of symmetric, we can loop over a half do i = 0, np-1 do j = i, np-1 dx = loc(i * DIM + 1) - loc(j * DIM + 1) dy = loc(i * DIM + 2) - loc(j * DIM + 2) r = sqrt(dx * dx + dy * dy); tr1 = term1(r,ep) / (4.d0 * PI); tr2 = term2(r,ep) / (4.d0 * PI); ! diagoanl elements and upper half mat(i * DIM + 1 + j * DIM * np * DIM) = & mat(i * DIM + 1 + j * DIM * np * DIM) - tr1 + tr2 * dx * dx mat(i * DIM + 1 + (j * DIM + 1) * np * DIM) = & mat(i * DIM + 1 + (j * DIM + 1) * np * DIM) + tr2 * dx * dy mat(i * DIM + 2 + j * DIM * np * DIM) = & mat(i * DIM + 2 + j * DIM * np * DIM) + tr2 * dx * dy mat(i * DIM + 2 + (j * DIM + 1) * np * DIM) = & mat(i * DIM + 2 + (j * DIM + 1) * np * DIM) - tr1 + tr2 * dy * dy if (i /= j) then ! lower half mat(j * DIM + 1 + i * DIM * np * DIM) = & mat(j * DIM + 1 + i * DIM * np * DIM) - tr1 + tr2 * dx * dx mat(j * DIM + 1 + (i * DIM + 1) * np * DIM) = & mat(j * DIM + 1 + (i * DIM + 1) * np * DIM) + tr2 * dx * dy mat(j * DIM + 2 + i * DIM * np * DIM) = & mat(j * DIM + 2 + i * DIM * np * DIM) + tr2 * dx * dy mat(j * DIM + 2 + (i * DIM + 1) * np * DIM) = & mat(j * DIM + 2 + (i * DIM + 1) * np * DIM) - tr1 + tr2 * dy * dy end if end do end do return end subroutine slet2d_mkMatrix ! Sovle Liear ststem ! Use Lapack subroutine slet2d_solve(np,mat,vel,foc) external dgesv integer :: np double precision, dimension(:), allocatable :: mat,vel,foc integer :: nrhs integer :: n integer :: lda integer :: ldb integer,dimension(:),allocatable :: ipiv; integer :: i; integer :: info; ! solve Ax=b ! A (amat) is n x n matrix nrhs = 1 ! # of RHS is 1 n = DIM * np lda = DIM * np ldb = DIM * np ! The pivot indices that define the permutation matrix P ! row i of the matrix was interchanged with row IPIV(i). allocate(ipiv(DIM * np)) ! set RHS do i = 1, n foc(i) = vel(i) end do ! solve with LAPACK call dgesv(n, nrhs, mat, lda, ipiv, foc, ldb, info) ! check ! if (info == 0) printf("successfully done\n"); if (info < 0) then print *,"the",-info,"-th argument had an illegal value" call exit(-1) end if if (info > 0) then print *,"U(",info,",",info,") is exactly zero." call exit(-1) end if ! free deallocate(ipiv) return end subroutine slet2d_solve ! CG use blas subroutine slet2d_solve_CG(np,mat,b,x) external dnrm2,dcopy,dgemv,ddot,daxpy double precision :: ddot, dnrm2 integer :: np double precision,dimension(:),allocatable :: mat,b,x double precision,parameter :: tol = 1.d-8 double precision,dimension(:),allocatable :: r double precision,dimension(:),allocatable :: p double precision,dimension(:),allocatable :: Ap double precision :: rr,pAp,rr1,alpha,beta integer :: i,j,count double precision :: al,bt,normb character(len=1) :: tr = "N" integer :: inc,n n = DIM * np inc = 1 ! Check if the solution is trivial. normb = dnrm2(n, b, inc) if (normb <= 0.0) then do i = 1, n x(i) = 0.d0 end do return end if ! Allocate Working Spaces allocate(r(n)) allocate(p(n)) allocate(Ap(n)) ! compute r0 = b - Ax al = -1.d0 bt = 1.d0 call dcopy(n,b,inc,r,inc) ! r = b call dgemv(tr,n,n,al,mat,n,x,inc,bt,r,inc) ! r=r-Ax rr = 0.d0 call dcopy(n,r,inc,p,inc) ! p = r rr = ddot(n,r,inc,r,inc) ! rr = r.r print *,"rr=",rr ! cg iteration count = 0 do while(rr > tol * tol * normb * normb) ! Ap = A*p al = 1.d0 bt = 0.d0 call dgemv(tr,n,n,al,mat,n,p,inc,bt,Ap,inc) ! alpha = r.r / p.Ap pAp = 0.d0 pAp = ddot(n,p,inc,Ap,inc) ! pAp = p.Ap alpha = rr / pAp ! Beta rr1 = 0.d0 call daxpy(n,alpha,p,inc,x,inc) ! x += alpha * p al = -alpha call daxpy(n,al,Ap,inc,r,inc) ! r -= alpha * Ap rr1 = ddot(n,r,inc,r,inc) ! rr1 = r.r beta = rr1 / rr ! p = r + beta * p no blas routine :( do i = 1,n p(i) = r(i) + beta * p(i) end do rr = rr1 count = count + 1 end do ! Deallocate Working Spaces deallocate(r) deallocate(p) deallocate(Ap) return end subroutine slet2d_solve_CG subroutine check_solution(np,mat,b,x) external dcopy,dgemv,dnrm2 double precision :: dnrm2 integer :: np double precision,dimension(:),allocatable :: mat,b,x double precision,dimension(:),allocatable :: r double precision :: al,bt,rr character(len=1) :: tr = "N" integer :: inc,n n = DIM * np inc = 1 ! Allocate Working Spaces allocate(r(n)) ! compute r0 = b - Ax al = -1.d0 bt = 1.d0 call dcopy(n,b,inc,r,inc) ! r = b call dgemv(tr,n,n,al,mat,n,x,inc,bt,r,inc) ! rr = |r| rr = dnrm2(n, r, inc) print *,"|b - Ax|=",rr deallocate(r) return end subroutine check_solution ! ! compute velocity subroutine slet2d_velocity(np, loc, foc, ep, nump, cloc,cvel) integer :: np double precision,dimension(:),allocatable :: loc, foc double precision :: ep integer :: nump double precision,dimension(:),allocatable :: cloc,cvel integer :: i,p double precision :: r double precision :: dx,dy double precision :: tr1,tr2 ! loop for grid do p = 0, nump-1 ! zeros cvel(p * DIM + 1) = 0.d0 cvel(p * DIM + 2) = 0.d0 ! loop for partilces (blob) do i = 0, np-1 dx = cloc(p * DIM + 1) - loc(i * DIM + 1) dy = cloc(p * DIM + 2) - loc(i * DIM + 2) r = sqrt(dx * dx + dy * dy) tr1 = term1(r,ep) / (4.d0 * PI) tr2 = term2(r,ep) / (4.d0 * PI) tr2 = tr2 * (foc(i * DIM + 1) * dx + foc(i * DIM + 2) * dy) cvel(p * DIM + 1) = cvel(p * DIM + 1) - foc(i * DIM + 1) * tr1 + tr2 * dx cvel(p * DIM + 2) = cvel(p * DIM + 2) - foc(i * DIM + 2) * tr1 + tr2 * dy end do end do return end subroutine slet2d_velocity double precision function term1(r,ep) double precision :: r,ep double precision ::sq sq = sqrt(r * r + ep * ep) term1 = log(sq + ep) - ep * (sq + 2.d0 * ep) / (sq + ep) / sq return end function term1 double precision function term2(r,ep) double precision :: r,ep double precision :: sq sq = sqrt(r * r + ep * ep) term2 = (sq + 2.d0 * ep) / (sq + ep) / (sq + ep) / sq return end function term2 ! end module stokeslet2d
Note:
See TracWiki
for help on using the wiki.