Version 1 (modified by 5 years ago) ( diff ) | ,
---|
Installing R Packages on Cypress
If you want to use some R packages that are not yet installed in your desired version of R on Cypress, then you have several alternatives, as prescribed below, for locations for installing those packages. Those locations include either your user home directory or lustre sub-directory, and the methods will vary depending on your desired level of reproducibility.
Alternative 1 - default to home sub-directory
From your R session, you may choose to have R install its packages into a sub-directory under your home directory. By default R will create such a sub-directory whose name corresponds to the R version of your current R session and install your packages there.
> R.version.string [1] "R version 3.4.1 (2017-06-30)" > install.packages("copula") Installing package into ‘/share/apps/spark/spark-2.0.0-bin-hadoop2.6/R/lib’ (as ‘lib’ is unspecified) Warning in install.packages("copula") : 'lib = "/share/apps/spark/spark-2.0.0-bin-hadoop2.6/R/lib"' is not writable Would you like to use a personal library instead? (y/n) y Would you like to create a personal library ~/R/x86_64-pc-linux-gnu-library/3.4 to install packages into? (y/n) y --- Please select a CRAN mirror for use in this session --- PuTTY X11 proxy: unable to connect to forwarded X server: Network error: Connection refused HTTPS CRAN mirror 1: 0-Cloud [https] 2: Algeria [https] ... 79: Vietnam [https] 80: (HTTP mirrors) Selection: 77 ...
Note that the above example was performed without X11 forwarding, resulting in a prompt at the command line for selection of a CRAN mirror site in the above, at which point you should enter the number corresponding to the desired mirror site, e.g. 77.
Alternative 2 - specify your lustre sub-directory via exported environment variable
Alternatively, if you prefer to use, say, your lustre sub-directory rather than your home directory, then you may do so via an exported environment variable setting as in the following. The environmental variable R_LIBS_USER points the desired location of user package(s).
First, create a directory and export the environment variable.
mkdir -p /lustre/project/<your-group-name>/R/Library export R_LIBS_USER=/lustre/project/<your-group-name>/R/Library
Then run R and install a package. Note that we can use the R function .libPaths() as confirmation of the user library location.
> .libPaths() [1] "/lustre/project/<your-group-name>/R/Library" [2] "/share/apps/spark/spark-2.0.0-bin-hadoop2.6/R/lib" [3] "/share/apps/R/3.4.1-intel/lib64/R/library" > install.packages("copula") Installing package into ‘/lustre/project/<your-group-name>/R/Library’ (as ‘lib’ is unspecified) ...
Alternative 3 - specify lustre sub-directory via environment file
Similarly, you may accomplish the above via the same environment variable setting as above but in a local file as in the following.
First, create a directory as above.
mkdir -p /lustre/project/<your-group-name>/R/Library
Then setting R_LIBS_USER in the file ~/.Renviron will tell R a default location.
Note however that setting or unsetting the environment variable R_LIBS_USER in the file ~/.Renviron will override any previously exported value of that same environment variable!
echo 'R_LIBS_USER="/lustre/project/<your-group-name>/R/Library"' > ~/.Renviron
Or use a text editor in order to create and edit the file ~/.Renviron so that the file includes the following line.
R_LIBS_USER="/lustre/project/<your-group-name>/R/Library"
Then run R and install a package. Note again the use of R function .libPaths() as confirmation of the user library location.
> .libPaths() [1] "/lustre/project/<your-group-name>/R/Library" [2] "/share/apps/spark/spark-2.0.0-bin-hadoop2.6/R/lib" [3] "/share/apps/R/3.4.1-intel/lib64/R/library" > install.packages("copula") Installing package into ‘/lustre/project/<your-group-name>/R/Library’ (as ‘lib’ is unspecified) ...
Alternative 4 - specify lustre sub-directory via R profile file
Similarly, you may set the sub-directory depending on R major.minor version via the R profile file as in the following.
Edit the file ~/.Rprofile as follows.
majorMinorPatch <- paste(R.version[c("major", "minor")], collapse=".") majorMinor <- gsub("(.*)\\..*", "\\1", majorMinorPatch) #print(paste0("majorMinor=", majorMinor)) myLibPath <- paste0("/lustre/project/<your-group-name>/R/Library/", majorMinor) dir.create(myLibPath, showWarnings = FALSE) #print(paste0("myLibPath=", myLibPath)) newLibPaths <- c(myLibPath, .libPaths()) .libPaths(newLibPaths)
Note that setting the R library trees directly via the R function .libPaths() in the file ~/.Rprofile can thus either override or append to that of any previously set value of R_LIBS_USER!
Then run R and install a package. Note again the use of R function .libPaths() as confirmation of the user library location.
> .libPaths() [1] "/lustre/project/<your-group-name>/R/Library/3.4" [2] "/share/apps/spark/spark-2.0.0-bin-hadoop2.6/R/lib" [3] "/share/apps/R/3.4.1-intel/lib64/R/library" > install.packages("copula") Installing package into ‘/lustre/project/<your-group-name>/R/Library/3.4’ (as ‘lib’ is unspecified) ...
Alternative 5 - specify lustre sub-directory via R code
As for yet another alternative, you can accomplish the above entirely in your R code via the following. First, create a directory as before.
mkdir -p /lustre/project/<your-group-name>/R/Library
Then run R and install a package, but note that you must also specify the location from which to load the package in the ensuing call to the R function library().
> myLib := "/lustre/project/<your-group-name>/R/Library" > install.packages("copula",lib=myLib) ... > library(copula, lib.loc=myLib)