| | 1 | = Ex32.c = |
| | 2 | {{{#!C |
| | 3 | /* |
| | 4 | Large Scale Computing |
| | 5 | Stokes Flow in a Cavity |
| | 6 | ex32.c |
| | 7 | |
| | 8 | Need Lapack and Blas Libraries |
| | 9 | */ |
| | 10 | #include<stdio.h> |
| | 11 | #include<stdlib.h> |
| | 12 | #include<math.h> |
| | 13 | #include<time.h> |
| | 14 | #include"stokeslet2d.h" |
| | 15 | |
| | 16 | #define EPSILON 0.005 /* blob size*/ |
| | 17 | #define INTGRID 51 /* # of x-grid lines for internal velocity */ |
| | 18 | |
| | 19 | /* min and max macros */ |
| | 20 | #define max(a,b) (((a) > (b)) ? (a) : (b)) |
| | 21 | #define min(a,b) (((a) < (b)) ? (a) : (b)) |
| | 22 | |
| | 23 | double t_cost(void ); |
| | 24 | int main(int , char **); |
| | 25 | int main(int argc, char **argv){ |
| | 26 | double dp; |
| | 27 | int numpdepth; |
| | 28 | int numpwidth; |
| | 29 | int numparticles; |
| | 30 | double *loc; /* particle location */ |
| | 31 | double *vel; /* particle velocity */ |
| | 32 | double *foc; /* particle force */ |
| | 33 | double *mat; /* 2Nx2N dense matrix */ |
| | 34 | double *cloc; /* array for internal points */ |
| | 35 | double *cvel; /* array for internal velocity */ |
| | 36 | int i,j; |
| | 37 | int nyg; |
| | 38 | FILE *fp; |
| | 39 | |
| | 40 | if (argc < 2){ |
| | 41 | printf("Usage:%s [Depth of Cavity]\n",argv[0]); |
| | 42 | exit(-1); |
| | 43 | } |
| | 44 | |
| | 45 | /* get inputed depth */ |
| | 46 | dp = atof(argv[1]); |
| | 47 | |
| | 48 | /* # of particles in depth */ |
| | 49 | numpdepth = (int)(dp / EPSILON + 0.5); |
| | 50 | |
| | 51 | /* # of particles in width */ |
| | 52 | numpwidth = (int)(1.0 / EPSILON + 0.5); |
| | 53 | |
| | 54 | /* total # od particles */ |
| | 55 | numparticles = numpdepth * 2 + numpwidth * 2; |
| | 56 | printf("Total # of Particles=%d\n",numparticles); |
| | 57 | |
| | 58 | /* Allocate Space */ |
| | 59 | /* DIM=2 defined by 'stokeslet2d.h' */ |
| | 60 | loc = (double *)calloc(numparticles * DIM,sizeof(double)); |
| | 61 | vel = (double *)calloc(numparticles * DIM,sizeof(double)); |
| | 62 | foc = (double *)calloc(numparticles * DIM,sizeof(double)); |
| | 63 | mat = (double *)calloc(numparticles * DIM * numparticles * DIM,sizeof(double)); |
| | 64 | if ((loc == (double *)NULL) || |
| | 65 | (vel == (double *)NULL) || |
| | 66 | (foc == (double *)NULL) || |
| | 67 | (mat == (double *)NULL) ){ |
| | 68 | printf("Can't allocate memory!!!\n"); |
| | 69 | exit(-1); |
| | 70 | } |
| | 71 | |
| | 72 | /* set location & velocity of particles (blob)*/ |
| | 73 | for (i = 0 ; i < numparticles ; i++){ |
| | 74 | foc[i * DIM] = 0.0; |
| | 75 | foc[i * DIM + 1] = 0.0; |
| | 76 | if ((i >= 0) && (i <= numpwidth)){ /* top */ |
| | 77 | loc[i * DIM] = -0.5 + EPSILON * (double)i; /* x */ |
| | 78 | loc[i * DIM + 1] = 0.0; /* y */ |
| | 79 | vel[i * DIM] = 1.0; |
| | 80 | vel[i * DIM + 1] = 0.0; |
| | 81 | }else{ |
| | 82 | if (i <= (numpwidth + numpdepth)){ /* right wall */ |
| | 83 | loc[i * DIM] = 0.5; /* x */ |
| | 84 | loc[i * DIM + 1] = -EPSILON * (double)(i - numpwidth); /* y */ |
| | 85 | vel[i * DIM] = 0.0; |
| | 86 | vel[i * DIM + 1] = 0.0; |
| | 87 | }else{ |
| | 88 | if (i <= (2 * numpwidth + numpdepth)){ /* bottom */ |
| | 89 | loc[i * DIM] = 0.5 - EPSILON * (double)(i - (numpwidth + numpdepth)); /* x */ |
| | 90 | loc[i * DIM + 1] = -EPSILON * numpdepth; /* y */ |
| | 91 | vel[i * DIM] = 0.0; |
| | 92 | vel[i * DIM + 1] = 0.0; |
| | 93 | }else{ /* left wall */ |
| | 94 | loc[i * DIM] = -0.5; /* x */ |
| | 95 | loc[i * DIM + 1] = -EPSILON * (double)((2 * numpwidth + 2 * numpdepth) - i); /* y */ |
| | 96 | vel[i * DIM] = 0.0; |
| | 97 | vel[i * DIM + 1] = 0.0; |
| | 98 | } |
| | 99 | } |
| | 100 | } |
| | 101 | } |
| | 102 | |
| | 103 | /* make 2Nx2N Matrix */ |
| | 104 | t_cost(); |
| | 105 | slet2d_mkMatrix(numparticles,loc,EPSILON,mat); |
| | 106 | printf("setting matrix %f sec\n",t_cost()); |
| | 107 | |
| | 108 | /* Sovle linear ststem */ |
| | 109 | slet2d_solve(numparticles,mat,vel,foc); |
| | 110 | //slet2d_solve_CG(numparticles,mat,vel,foc); |
| | 111 | //slet2d_solve_GMRES(numparticles,mat,vel,foc); |
| | 112 | |
| | 113 | printf("Sovle linear ststem %f sec\n",t_cost()); |
| | 114 | |
| | 115 | /* check the solution */ |
| | 116 | slet2d_mkMatrix(numparticles,loc,EPSILON,mat); |
| | 117 | check_solution(numparticles,mat,vel,foc); |
| | 118 | |
| | 119 | /* deallocate big matrix */ |
| | 120 | free(mat); |
| | 121 | |
| | 122 | /* out particle (blob) data */ |
| | 123 | fp = fopen("particle.dat","w"); |
| | 124 | for (i = 0 ; i < numparticles ; i++){ |
| | 125 | fprintf(fp,"%e %e %e %e %e %e\n", |
| | 126 | loc[i * DIM],loc[i * DIM + 1], |
| | 127 | vel[i * DIM],vel[i * DIM + 1], |
| | 128 | foc[i * DIM],foc[i * DIM + 1]); |
| | 129 | } |
| | 130 | fclose(fp); |
| | 131 | |
| | 132 | /* |
| | 133 | compute internal velocity |
| | 134 | */ |
| | 135 | nyg = (int)(EPSILON * (double)(numpdepth * (INTGRID - 1))); |
| | 136 | cvel = (double *)calloc(INTGRID * nyg * DIM, sizeof(double)); |
| | 137 | cloc = (double *)calloc(INTGRID * nyg * DIM, sizeof(double)); |
| | 138 | |
| | 139 | if ((cloc == (double *)NULL) || |
| | 140 | (cvel == (double *)NULL)){ |
| | 141 | printf("Can't allocate memory!!!\n"); |
| | 142 | exit(-1); |
| | 143 | } |
| | 144 | /* setting location */ |
| | 145 | for (j = 0 ; j < nyg ; j++){ |
| | 146 | for (i = 0 ; i < INTGRID ; i++){ |
| | 147 | cloc[DIM * (i + INTGRID * j) ] = -0.5 + (double)i / (double)(INTGRID - 1); |
| | 148 | cloc[DIM * (i + INTGRID * j) + 1] = -(double)j / (double)(INTGRID - 1); |
| | 149 | } |
| | 150 | } |
| | 151 | |
| | 152 | /* compute velocities */ |
| | 153 | t_cost(); |
| | 154 | slet2d_velocity(numparticles, loc, foc, EPSILON, INTGRID * nyg, cloc, cvel); |
| | 155 | printf("Compute internal velocity %f sec\n",t_cost()); |
| | 156 | |
| | 157 | /* out velocities */ |
| | 158 | fp = fopen("res.dat","w"); |
| | 159 | for (j = 0 ; j < nyg ; j++){ |
| | 160 | for (i = 0 ; i < INTGRID ; i++){ |
| | 161 | fprintf(fp,"%e %e %e %e\n", |
| | 162 | cloc[DIM * (i + INTGRID * j) ], cloc[DIM * (i + INTGRID * j) + 1], |
| | 163 | cvel[DIM * (i + INTGRID * j) ], cvel[DIM * (i + INTGRID * j) + 1]); |
| | 164 | } |
| | 165 | } |
| | 166 | fclose(fp); |
| | 167 | |
| | 168 | /* free */ |
| | 169 | free(cloc); |
| | 170 | free(cvel); |
| | 171 | |
| | 172 | free(loc); |
| | 173 | free(vel); |
| | 174 | free(foc); |
| | 175 | } |
| | 176 | |
| | 177 | /* for timing */ |
| | 178 | double t_cost(void ){ |
| | 179 | static clock_t ptm; |
| | 180 | static int fl = 0; |
| | 181 | clock_t tm; |
| | 182 | double sec; |
| | 183 | |
| | 184 | tm = clock(); |
| | 185 | if (fl == 0) ptm = tm; |
| | 186 | fl = 1; |
| | 187 | |
| | 188 | sec = (double)(tm - ptm) / (double)CLOCKS_PER_SEC; |
| | 189 | |
| | 190 | ptm = tm; |
| | 191 | |
| | 192 | return sec; |
| | 193 | } |
| | 194 | stokeslet2d.c |
| | 195 | |
| | 196 | /* |
| | 197 | Large Scale Computing |
| | 198 | Stokeslet for 2D |
| | 199 | |
| | 200 | Ricardo Cortez,"The Method of Regularized Stokeslets", |
| | 201 | (2001), SIAM J. Sci. Comput., Vol.23, No.4, pp.1204 |
| | 202 | |
| | 203 | assuming mu = 1 |
| | 204 | */ |
| | 205 | #include<stdio.h> |
| | 206 | #include<stdlib.h> |
| | 207 | #include<math.h> |
| | 208 | #include"stokeslet2d.h" |
| | 209 | #include"gmres.h" |
| | 210 | |
| | 211 | double term1(double ,double ); |
| | 212 | double term2(double ,double ); |
| | 213 | /* Blas Function */ |
| | 214 | double ddot_(int *,double *,int *,double *,int *); |
| | 215 | double dnrm2_(int *, double *, int *); |
| | 216 | |
| | 217 | /* make Matrix */ |
| | 218 | void slet2d_mkMatrix(int np,double *loc,double ep,double *mat){ |
| | 219 | int i,j; |
| | 220 | double r; |
| | 221 | double dx,dy; |
| | 222 | double tr1,tr2; |
| | 223 | |
| | 224 | /*zeros mat*/ |
| | 225 | for (i = 0 ; i < DIM * DIM * np * np ; i++) mat[i] = 0.0; |
| | 226 | |
| | 227 | /* make mat */ |
| | 228 | /* Because of symmetric, we can loop over half */ |
| | 229 | for (i = 0 ; i < np ; i++){ |
| | 230 | for (j = i ; j < np ; j++){ |
| | 231 | dx = loc[i * DIM ] - loc[j * DIM ]; |
| | 232 | dy = loc[i * DIM + 1] - loc[j * DIM + 1]; |
| | 233 | r = sqrt(dx * dx + dy * dy); |
| | 234 | |
| | 235 | tr1 = term1(r,ep) / (4.0 * M_PI); |
| | 236 | tr2 = term2(r,ep) / (4.0 * M_PI); |
| | 237 | |
| | 238 | /* diagoanl elements and upper half */ |
| | 239 | mat[i * DIM + j * DIM * np * DIM] += -tr1 + tr2 * dx * dx; |
| | 240 | mat[i * DIM + (j * DIM + 1) * np * DIM] += tr2 * dx * dy; |
| | 241 | mat[i * DIM + 1 + j * DIM * np * DIM] += tr2 * dx * dy; |
| | 242 | mat[i * DIM + 1 + (j * DIM + 1) * np * DIM] += -tr1 + tr2 * dy * dy; |
| | 243 | if (i != j){ |
| | 244 | /* lower half */ |
| | 245 | mat[j * DIM + i * DIM * np * DIM] += -tr1 + tr2 * dx * dx; |
| | 246 | mat[j * DIM + (i * DIM + 1) * np * DIM] += tr2 * dx * dy; |
| | 247 | mat[j * DIM + 1 + i * DIM * np * DIM] += tr2 * dx * dy; |
| | 248 | mat[j * DIM + 1 + (i * DIM + 1) * np * DIM] += -tr1 + tr2 * dy * dy; |
| | 249 | } |
| | 250 | } |
| | 251 | } |
| | 252 | } |
| | 253 | |
| | 254 | /* Sovle Liear ststem */ |
| | 255 | /* Use Lapack */ |
| | 256 | void slet2d_solve(int np,double *mat,double *vel,double *foc){ |
| | 257 | int nrhs; |
| | 258 | int n; |
| | 259 | int lda; |
| | 260 | int ldb; |
| | 261 | int *ipiv; |
| | 262 | int i; |
| | 263 | int info; |
| | 264 | |
| | 265 | /*solve Ax=b */ |
| | 266 | /* A (amat) is n x n matrix */ |
| | 267 | nrhs = 1; /* # of RHS is 1 */ |
| | 268 | n = DIM * np; |
| | 269 | lda = DIM * np; |
| | 270 | ldb = DIM * np; |
| | 271 | ipiv = calloc(DIM * np,sizeof(int)); /* The pivot indices that define the permutation matrix P; |
| | 272 | row i of the matrix was interchanged with row IPIV(i). */ |
| | 273 | if (ipiv == NULL) exit(-1); |
| | 274 | |
| | 275 | /* set RHS */ |
| | 276 | for (i = 0 ; i < n ; i++) foc[i] = vel[i]; |
| | 277 | |
| | 278 | /* solve with LAPACK */ |
| | 279 | dgesv_(&n, &nrhs, mat, &lda, ipiv, foc, &ldb, &info); |
| | 280 | |
| | 281 | /* check */ |
| | 282 | /* if (info == 0) printf("successfully done\n"); */ |
| | 283 | if (info < 0){ |
| | 284 | printf("the %d-th argument had an illegal value\n",-info); |
| | 285 | exit(-1); |
| | 286 | } |
| | 287 | if (info > 0){ |
| | 288 | printf("U(%d,%d) is exactly zero.\n",info,info); |
| | 289 | exit(-1); |
| | 290 | } |
| | 291 | |
| | 292 | /* free */ |
| | 293 | free(ipiv); |
| | 294 | } |
| | 295 | |
| | 296 | /* CG use blas */ |
| | 297 | void slet2d_solve_CG(int np,double *mat,double *b,double *x){ |
| | 298 | double tol = 1.0e-8; |
| | 299 | double *r; |
| | 300 | double *p; |
| | 301 | double *Ap; |
| | 302 | double rr,pAp,rr1,alpha,beta; |
| | 303 | int i,j,count; |
| | 304 | double al,bt,normb; |
| | 305 | char tr[1] = "N"; |
| | 306 | int inc,n; |
| | 307 | |
| | 308 | n = DIM * np; |
| | 309 | inc = 1; |
| | 310 | |
| | 311 | /* Check if the solution is trivial. */ |
| | 312 | normb = dnrm2_(&n, b, &inc); |
| | 313 | if (normb <= 0.0){ |
| | 314 | for (i = 0 ; i < n ; i++) x[i] = 0.0; |
| | 315 | return; |
| | 316 | } |
| | 317 | |
| | 318 | /* Allocate Working Spaces */ |
| | 319 | r = (double *)calloc(n, sizeof(double)); |
| | 320 | p = (double *)calloc(n, sizeof(double)); |
| | 321 | Ap = (double *)calloc(n, sizeof(double)); |
| | 322 | if ((r == NULL) || (p == NULL) || (Ap == NULL)){ |
| | 323 | printf("memory allocation failed\n"); |
| | 324 | return ; |
| | 325 | } |
| | 326 | |
| | 327 | /* compute r0 = b - Ax */ |
| | 328 | al = -1.0; |
| | 329 | bt = 1.0; |
| | 330 | dcopy_(&n,b,&inc,r,&inc); /* r = b */ |
| | 331 | dgemv_(tr,&n,&n,&al,mat,&n,x,&inc,&bt,r,&inc); |
| | 332 | |
| | 333 | rr = 0.0; |
| | 334 | dcopy_(&n,r,&inc,p,&inc); /* p = r */ |
| | 335 | rr = ddot_(&n,r,&inc,r,&inc); /* rr = r.r */ |
| | 336 | printf("rr=%e\n",rr); |
| | 337 | |
| | 338 | /* cg iteration */ |
| | 339 | count = 0; |
| | 340 | while(rr > tol * tol * normb * normb){ |
| | 341 | // Ap = A*p |
| | 342 | al = 1.0; |
| | 343 | bt = 0.0; |
| | 344 | dgemv_(tr,&n,&n,&al,mat,&n,p,&inc,&bt,Ap,&inc); |
| | 345 | |
| | 346 | /* alpha = r.r / p.Ap */ |
| | 347 | pAp = 0.0; |
| | 348 | pAp = ddot_(&n,p,&inc,Ap,&inc); /* pAp = p.Ap */ |
| | 349 | alpha = rr / pAp; |
| | 350 | |
| | 351 | /* Beta */ |
| | 352 | rr1 = 0.0; |
| | 353 | daxpy_(&n,&alpha,p,&inc,x,&inc); /* x += alpha * p */ |
| | 354 | al = -alpha; |
| | 355 | daxpy_(&n,&al,Ap,&inc,r,&inc); /* r -= alpha * Ap */ |
| | 356 | rr1 = ddot_(&n,r,&inc,r,&inc); /* rr1 = r.r */ |
| | 357 | |
| | 358 | beta = rr1 / rr; |
| | 359 | /* p = r + beta * p no blas routine :( */ |
| | 360 | for (i = 0 ; i < n ; i++){ |
| | 361 | p[i] = r[i] + beta * p[i]; |
| | 362 | } |
| | 363 | |
| | 364 | rr = rr1; |
| | 365 | count++; |
| | 366 | } |
| | 367 | |
| | 368 | /* Deallocate Working Spaces */ |
| | 369 | free(r); |
| | 370 | free(p); |
| | 371 | free(Ap); |
| | 372 | } |
| | 373 | |
| | 374 | void check_solution(int np,double *mat,double *b,double *x){ |
| | 375 | double *r; |
| | 376 | double al,bt,rr; |
| | 377 | char tr[1] = "N"; |
| | 378 | int inc,n; |
| | 379 | |
| | 380 | n = DIM * np; |
| | 381 | inc = 1; |
| | 382 | |
| | 383 | /* Allocate Working Spaces */ |
| | 384 | r = (double *)calloc(n, sizeof(double)); |
| | 385 | |
| | 386 | /* compute r0 = b - Ax */ |
| | 387 | al = -1.0; |
| | 388 | bt = 1.0; |
| | 389 | dcopy_(&n,b,&inc,r,&inc); /* r = b */ |
| | 390 | dgemv_(tr,&n,&n,&al,mat,&n,x,&inc,&bt,r,&inc); |
| | 391 | |
| | 392 | /* rr = |r| */ |
| | 393 | rr = dnrm2_(&n, r, &inc); |
| | 394 | |
| | 395 | printf("|b - Ax|=%e\n",rr); |
| | 396 | free(r); |
| | 397 | } |
| | 398 | |
| | 399 | /* Use Lapack */ |
| | 400 | void slet2d_solve_GMRES(int np,double *mat,double *vel,double *foc){ |
| | 401 | int n; |
| | 402 | int restart; |
| | 403 | int max_iterations; |
| | 404 | double tol; |
| | 405 | |
| | 406 | /* set GMRES parameters */ |
| | 407 | restart = 100; |
| | 408 | max_iterations = 100; |
| | 409 | tol = 1.0e-8; |
| | 410 | |
| | 411 | /*solve Ax=b */ |
| | 412 | /* A (amat) is n x n matrix */ |
| | 413 | n = DIM * np; |
| | 414 | |
| | 415 | /* solve with GMRES */ |
| | 416 | gmres_solve(mat, foc, vel, n, restart, &tol, &max_iterations); |
| | 417 | } |
| | 418 | |
| | 419 | /* compute velocity */ |
| | 420 | void slet2d_velocity(int np, double *loc, double *foc, double ep, int nump, double *cloc,double *cvel){ |
| | 421 | int i,p; |
| | 422 | double r; |
| | 423 | double dx,dy; |
| | 424 | double tr1,tr2; |
| | 425 | |
| | 426 | /* loop for grid */ |
| | 427 | for (p = 0 ; p < nump ; p++){ |
| | 428 | /* zeros */ |
| | 429 | cvel[p * DIM ] = 0.0; |
| | 430 | cvel[p * DIM + 1] = 0.0; |
| | 431 | |
| | 432 | /* loop for partilces (blob) */ |
| | 433 | for (i = 0 ; i < np ; i++){ |
| | 434 | dx = cloc[p * DIM ] - loc[i * DIM ]; |
| | 435 | dy = cloc[p * DIM + 1] - loc[i * DIM + 1]; |
| | 436 | r = sqrt(dx * dx + dy * dy); |
| | 437 | |
| | 438 | tr1 = term1(r,ep) / (4.0 * M_PI); |
| | 439 | tr2 = term2(r,ep) / (4.0 * M_PI); |
| | 440 | |
| | 441 | tr2 *= foc[i * DIM] * dx + foc[i * DIM + 1] * dy; |
| | 442 | |
| | 443 | cvel[p * DIM ] += -foc[i * DIM ] * tr1 + tr2 * dx; |
| | 444 | cvel[p * DIM + 1] += -foc[i * DIM + 1] * tr1 + tr2 * dy; |
| | 445 | } |
| | 446 | } |
| | 447 | } |
| | 448 | |
| | 449 | double term1(double r,double ep){ |
| | 450 | double sq; |
| | 451 | |
| | 452 | sq = sqrt(r * r + ep * ep); |
| | 453 | |
| | 454 | return log(sq + ep) - ep * (sq + 2.0 * ep) / (sq + ep) / sq; |
| | 455 | } |
| | 456 | |
| | 457 | |
| | 458 | double term2(double r,double ep){ |
| | 459 | double sq; |
| | 460 | |
| | 461 | sq = sqrt(r * r + ep * ep); |
| | 462 | |
| | 463 | return (sq + 2.0 * ep) / (sq + ep) / (sq + ep) / sq; |
| | 464 | }}}} |