| | 1 | = Ex25.c = |
| | 2 | {{{#!C |
| | 3 | /* |
| | 4 | Large Scale Computing |
| | 5 | 2D Convective Heat/Mass Transfer |
| | 6 | ex25.c : Numerical Analysis |
| | 7 | Solve for |
| | 8 | duphi/dx dvphi/dy = d2phi/dx2 + d2phi/dy2 |
| | 9 | the boundary conditions: |
| | 10 | phi = 0 along y=0, phi = 1 along y = 1 |
| | 11 | dphi/dx=0 along y=+-0.5 |
| | 12 | |
| | 13 | */ |
| | 14 | #include<stdio.h> |
| | 15 | #include<stdlib.h> |
| | 16 | #include<math.h> |
| | 17 | #include"slu.h" |
| | 18 | |
| | 19 | /* min and max macros */ |
| | 20 | #define max(a,b) (((a) > (b)) ? (a) : (b)) |
| | 21 | #define min(a,b) (((a) < (b)) ? (a) : (b)) |
| | 22 | |
| | 23 | #define NUM 100 /* number of points for x and y*/ |
| | 24 | |
| | 25 | int main(int argc, char **argv){ |
| | 26 | int i,j,k,n; |
| | 27 | int iw,ie,is,in; |
| | 28 | double d,x,y,u0,u,v; |
| | 29 | double dl; |
| | 30 | double ae,aw,an,as,ap; |
| | 31 | double phi[NUM * NUM]; /* define 1D array of length NUM * NUM */ |
| | 32 | double rhs[NUM * NUM]; /* define 1D array of length NUM * NUM */ |
| | 33 | double nzval[5 * NUM * NUM]; /* non-zero elements of A */ |
| | 34 | int colind[5 * NUM * NUM]; /* column indices of nonzeros */ |
| | 35 | int rowptr[NUM * NUM + 1]; /**/ |
| | 36 | int nnz; |
| | 37 | FILE *fp; |
| | 38 | |
| | 39 | if (argc < 3){ |
| | 40 | printf("Usage:%s [D] [U0]\n",argv[0]); |
| | 41 | exit(-1); |
| | 42 | } |
| | 43 | |
| | 44 | /* set parameters */ |
| | 45 | d = atof(argv[1]); |
| | 46 | u0 = atof(argv[2]); |
| | 47 | printf("D=%e U0=%e\n",d,u0); |
| | 48 | |
| | 49 | /*assuming dx = dy : domain is 1x1 */ |
| | 50 | dl = 1.0 / (double)(NUM - 1); |
| | 51 | |
| | 52 | /* initial & boundary conditions */ |
| | 53 | for (n = 0 ; n < NUM * NUM ; n++){ |
| | 54 | phi[n] = 0.0; |
| | 55 | } |
| | 56 | for (i = 0 ; i < NUM ; i++){ |
| | 57 | n = i + NUM * (NUM - 1); |
| | 58 | phi[n] = 1.0; /* fixed phi=1 */ |
| | 59 | } |
| | 60 | |
| | 61 | /* Setup Matrix A and RHS */ |
| | 62 | nnz = 0; |
| | 63 | for (n = 0 ; n < NUM * NUM ; n++){ |
| | 64 | /* compute i,j indices */ |
| | 65 | i = n % NUM; /* i is residual */ |
| | 66 | j = n / NUM; /* j is division */ |
| | 67 | ie = n + 1; |
| | 68 | iw = n - 1; |
| | 69 | in = n + NUM; |
| | 70 | is = n - NUM; |
| | 71 | |
| | 72 | /* (x,y) at p-pont */ |
| | 73 | x = -0.5 + (double)i / (double)(NUM - 1); |
| | 74 | y = (double)j / (double)(NUM - 1); |
| | 75 | |
| | 76 | /* set general RHS */ |
| | 77 | rhs[n] = 0.0; |
| | 78 | |
| | 79 | /* set first nonzero column of row index(i,j) */ |
| | 80 | rowptr[n] = nnz; |
| | 81 | |
| | 82 | /* general coefficients */ |
| | 83 | /* (u,v) = u0(x,-y) */ |
| | 84 | u = u0 * (x + dl * 0.5); /* u at e-point*/ |
| | 85 | ae = d / dl + max(-u,0.0); |
| | 86 | u = u0 * (x - dl * 0.5); /* u at w-point*/ |
| | 87 | aw = d / dl + max(u,0.0); |
| | 88 | v = -u0 * (y + dl * 0.5); /* v at n-point*/ |
| | 89 | an = d / dl + max(-v,0.0); |
| | 90 | v = -u0 * (y - dl * 0.5); /* v at s-point*/ |
| | 91 | as = d / dl + max(v,0.0); |
| | 92 | ap = ae + aw + an + as; |
| | 93 | |
| | 94 | /* sounth */ |
| | 95 | if (is >= 0){ |
| | 96 | nzval[nnz] = as; |
| | 97 | colind[nnz] = is; |
| | 98 | nnz++; |
| | 99 | } |
| | 100 | |
| | 101 | /* west */ |
| | 102 | if (iw >= 0){ |
| | 103 | nzval[nnz] = aw; |
| | 104 | colind[nnz] = iw; |
| | 105 | nnz++; |
| | 106 | } |
| | 107 | |
| | 108 | /* diagonal Element */ |
| | 109 | nzval[nnz] = -ap; |
| | 110 | colind[nnz] = n; |
| | 111 | nnz++; |
| | 112 | |
| | 113 | /* east */ |
| | 114 | if (ie < NUM * NUM){ |
| | 115 | nzval[nnz] = ae; |
| | 116 | colind[nnz] = ie; |
| | 117 | nnz++; |
| | 118 | } |
| | 119 | |
| | 120 | /* north */ |
| | 121 | if (in < NUM * NUM){ |
| | 122 | nzval[nnz] = an; |
| | 123 | colind[nnz] = in; |
| | 124 | nnz++; |
| | 125 | } |
| | 126 | } |
| | 127 | rowptr[NUM * NUM] = nnz; |
| | 128 | |
| | 129 | |
| | 130 | /* Setting Boundary Conditions */ |
| | 131 | for (i = 0 ; i < NUM ; i++){ |
| | 132 | /* Bottom fixed phi=0 */ |
| | 133 | n = i; |
| | 134 | for (k = rowptr[n] ; k < rowptr[n+1] ; k++){ |
| | 135 | if (n == colind[k]){ |
| | 136 | nzval[k] = -1.0; /* diag=-1 */ |
| | 137 | rhs[n] = nzval[k] * phi[n]; |
| | 138 | }else{ |
| | 139 | nzval[k] = 0.0; /* off-diag=0 */ |
| | 140 | } |
| | 141 | } |
| | 142 | /* Top fixed phi=1 */ |
| | 143 | n = i + NUM * (NUM - 1); |
| | 144 | for (k = rowptr[n] ; k < rowptr[n+1] ; k++){ |
| | 145 | if (n == colind[k]){ |
| | 146 | nzval[k] = -1.0; /* diag=-1 */ |
| | 147 | rhs[n] = nzval[k] * phi[n]; |
| | 148 | }else{ |
| | 149 | nzval[k] = 0.0; /* off-diag=0 */ |
| | 150 | } |
| | 151 | } |
| | 152 | } |
| | 153 | for (j = 0 ; j < NUM ; j++){ |
| | 154 | /* Left dphi/dx=0 */ |
| | 155 | n = j * NUM; |
| | 156 | ie = n + 1; |
| | 157 | rhs[n] = 0.0; |
| | 158 | for (k = rowptr[n] ; k < rowptr[n+1] ; k++){ |
| | 159 | if (n == colind[k]){ |
| | 160 | nzval[k] = -1.0; /* diag=-1 */ |
| | 161 | }else{ |
| | 162 | if (ie == colind[k]){ |
| | 163 | nzval[k] = 1.0; /* off-diag_e=1 */ |
| | 164 | }else{ |
| | 165 | nzval[k] = 0.0; /* off-diag_else=0 */ |
| | 166 | } |
| | 167 | } |
| | 168 | } |
| | 169 | /* Right dphi/dx=0 */ |
| | 170 | n = NUM - 1 + j * NUM; |
| | 171 | iw = n - 1; |
| | 172 | rhs[n] = 0.0; |
| | 173 | for (k = rowptr[n] ; k < rowptr[n+1] ; k++){ |
| | 174 | if (n == colind[k]){ |
| | 175 | nzval[k] = -1.0; /* diag=-1 */ |
| | 176 | }else{ |
| | 177 | if (iw == colind[k]){ |
| | 178 | nzval[k] = 1.0; /* off-diag_w=1 */ |
| | 179 | }else{ |
| | 180 | nzval[k] = 0.0; /* off-diag_else=0 */ |
| | 181 | } |
| | 182 | } |
| | 183 | } |
| | 184 | } |
| | 185 | |
| | 186 | /* solve with SuperLU */ |
| | 187 | k = solve_slu(NUM * NUM, nnz, nzval, colind, rowptr, phi, rhs); |
| | 188 | if (k != 0){ |
| | 189 | printf("calculation failed\n"); |
| | 190 | exit(-1); |
| | 191 | } |
| | 192 | |
| | 193 | /* Output Result */ |
| | 194 | fp = fopen("res.dat","w"); |
| | 195 | if (fp == NULL){ |
| | 196 | printf("File could not create\n"); |
| | 197 | exit(-1); |
| | 198 | } |
| | 199 | |
| | 200 | for (i = 0 ;i < NUM ; i++){ |
| | 201 | for (j = 0 ; j < NUM ; j++){ |
| | 202 | x = -0.5 + (double)i / (double)(NUM - 1); |
| | 203 | y = (double)j / (double)(NUM - 1); |
| | 204 | fprintf(fp,"%e %e %e\n",x,y,phi[i + NUM * j]); |
| | 205 | } |
| | 206 | } |
| | 207 | fclose(fp); |
| | 208 | |
| | 209 | printf("Done\n"); |
| | 210 | } |
| | 211 | }}} |