Changes between Version 3 and Version 4 of cypress/Matlab


Ignore:
Timestamp:
08/14/15 16:35:44 (9 years ago)
Author:
fuji
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • cypress/Matlab

    v3 v4  
    8383fprintf('Real Time = %f(sec)\n',realT);
    8484fprintf('CPU Time = %f(sec)\n',cpuT);
    85 fprintf('Speedup Factor = %f\n',cpuT / realT);
     85fprintf('Ratio = %f\n',cpuT / realT);
    8686}}}
    8787
     
    113113Our license does not include MATLAB Distributed Computing Server. Therefore, multi-node parallel operations are not supported.
    114114
    115 
     115Workers are like independent processes. If you want to use 4 workers, you have to request at least 4 tasks within a node.
     116
     117[[Image(MatlabWorkers.jpg)]]
     118
     119{{{#!bash
     120#!/bin/bash
     121#SBATCH --qos=normal            # Quality of Service
     122#SBATCH --job-name=matlabPool     # Job Name
     123#SBATCH --time=1:00:00          # WallTime
     124#SBATCH --nodes=1               # Number of Nodes
     125#SBATCH --ntasks-per-node=1     # Number of tasks (MPI processes)
     126#SBATCH --cpus-per-task=4       # Number of threads per task (OMP threads)
     127
     128module load matlab
     129matlab  -nodesktop -nodisplay -nosplash -r "CreateWorker; ParforTest; exit;"
     130}}}
     131
     132''!CreateWorker.m'' is a Matlab code to create workers.
     133{{{#!matlab
     134% Parallel Tool Box Test "CreateWorker.m"
     135%
     136if isempty(getenv('SLURM_JOB_CPUS_PER_NODE'))
     137   nWorker = 1;
     138else
     139   nWorker = min(12,str2num(getenv('SLURM_JOB_CPUS_PER_NODE')));
     140end
     141% Create Workers
     142parpool(nWorker);
     143%
     144}}}
     145
     146''Parfor.m'' is a sample 'parfor' test code,
     147{{{#!matlab
     148% parfor "ParforTest.m"
     149%
     150iter = 10000;
     151sz = 50;
     152a = zeros(1,iter);
     153%
     154fprintf('Computing...\n');
     155tic;
     156parfor i = 1:iter
     157    a(i) = max(svd(randn(sz)));
     158end
     159toc;
     160%
     161poolobj = gcp('nocreate'); % Returns the current pool if one exists. If no pool, do not create new one.
     162if isempty(poolobj)
     163    poolobj = gcp;
     164end
     165fprintf('Number of Workers = %d.\n',poolobj.NumWorkers);
     166%
     167}}}
    116168 
    117 === Running MATLAB with Automatic Offloading ===
     169=== Running MATLAB with Automatic Offload ===
     170Internally MATLAB uses Intel MKL Basic Linear Algebra Subroutines (BLAS) and Linear Algebra package (LAPACK) routines to perform the underlying computations when running on Intel processors.
     171
     172Intel MKL includes Automatic Offload (AO) feature that enables computationally intensive Intel MKL functions to offload partial workload to attached '''Intel Xeon Phi''' coprocessors automatically and transparently.
     173
     174As a result, MATLAB performance can benefit from Intel Xeon Phi coprocessors via the Intel MKL AO feature when problem sizes are large enough to amortize the cost of transferring data to the coprocessors.
     175
     176In SLURM script, make sure that option '''--gres=mic:1''' is set and ''intel-psxe'' module as well as the MATLAB module has been loaded.
     177
     178{{{#!bash
     179#!/bin/bash
     180#SBATCH --qos=normal            # Quality of Service
     181#SBATCH --job-name=matlabAO     # Job Name
     182#SBATCH --time=1:00:00          # WallTime
     183#SBATCH --nodes=1               # Number of Nodes
     184#SBATCH --ntasks-per-node=1     # Number of tasks (MPI processes)
     185#SBATCH --cpus-per-task=1       # Number of threads per task (OMP threads)
     186#SBATCH --gres=mic:1            # Number of Co-Processors
     187
     188module load matlab
     189module load intel-psxe
     190
     191export MKL_MIC_ENABLE=1
     192matlab  -nodesktop -nodisplay -nosplash -r "MatTest; exit;"
     193}}}
     194
     195Note that
     196{{{#!bash
     197export MKL_MIC_ENABLE=1
     198}}}
     199enables Intel MKL Automatic Offload (AO).
     200
     201The sample cose is below:
     202{{{#!matlab
     203%
     204% Matrix test "MatTest.m"
     205%
     206A = rand(10000, 10000);
     207B = rand(10000, 10000);
     208tic;
     209C = A * B;
     210realT = toc;
     211fprintf('Real Time = %f(sec)\n',realT);
     212}}}