| | 1 | [[PageOutline]] |
| | 2 | = Explicit Offloading with OpenMP = |
| | 3 | Note that "host" is the CPU, and "device" is MIC/GPU. |
| | 4 | |
| | 5 | This is a simple OpenMP code: |
| | 6 | {{{ |
| | 7 | #include <iostream> |
| | 8 | #include <omp.h> |
| | 9 | |
| | 10 | int main( void ) { |
| | 11 | int totalProcs; |
| | 12 | totalProcs = omp_get_num_procs(); |
| | 13 | std::cout << "Number of Threads = " << totalProcs << std::endl; |
| | 14 | return 0; |
| | 15 | } |
| | 16 | }}} |
| | 17 | If run on Cypress computing node, the "Number of Threads" will be 20. |
| | 18 | |
| | 19 | Add a one-line directive #pragma that offloads to the device a line of executable code. |
| | 20 | {{{ |
| | 21 | #include <iostream> |
| | 22 | #include <omp.h> |
| | 23 | |
| | 24 | int main( void ) { |
| | 25 | int totalProcs; |
| | 26 | #pragma omp target device(0) |
| | 27 | totalProcs = omp_get_num_procs(); |
| | 28 | std::cout << "Number of Threads = " << totalProcs << std::endl; |
| | 29 | return 0; |
| | 30 | } |
| | 31 | }}} |
| | 32 | codes now return "240" |
| | 33 | Note that the host pauses until the device code is finished. |
| | 34 | This code offloads only one line of |
| | 35 | {{{ |
| | 36 | totalProcs = omp_get_num_procs(); |
| | 37 | }}} |
| | 38 | to the device. Use { } to offload a block of codes. |
| | 39 | |
| | 40 | What happens to 'totalProcs'? |
| | 41 | |
| | 42 | Primitive variables are automatically transferred to/from the device. |
| | 43 | |
| | 44 | [[Image(https://docs.google.com/drawings/d/e/2PACX-1vRSu_BN8fhGC6vUHyrWPmwFgM60MjQdt8xOJt3gLruenwkjfMtleZR7m7n8Zy6uSy2F9DFUAp03gdxN/pub?w=533&h=285)]] |
| | 45 | |
| | 46 | == Parallel Loop == |
| | 47 | OpenMP region is defined by an omp directive. This for-loop runs on device. |
| | 48 | {{{ |
| | 49 | int main( void ) { |
| | 50 | double a[500000]; |
| | 51 | // static arrays are allocated on the stack; literal here is important |
| | 52 | int i; |
| | 53 | #pragma omp target device(0) |
| | 54 | #pragma omp parallel for |
| | 55 | for ( i=0; i<500000; i++ ) { |
| | 56 | a[i] = (double)i; |
| | 57 | } |
| | 58 | ... |
| | 59 | }}} |
| | 60 | What happens to “a”? |
| | 61 | 1. Detect a device |
| | 62 | 2. Allocate 'a' on the device memory. |
| | 63 | 3. The static array “a” is transferred to the device memory. |
| | 64 | 4. Execute the device-side code |
| | 65 | 5. Values in “a” in the device memory are transferred back to the host memory. |
| | 66 | |
| | 67 | == Controlling the Offload == |
| | 68 | Get the number of devices |
| | 69 | {{{ |
| | 70 | const int num_dev = omp_get_num_devices(); |
| | 71 | std::cout << "number of devices : " << num_dev << std::endl; |
| | 72 | }}} |
| | 73 | Control data transfer |
| | 74 | |
| | 75 | Transfer data from the device at the end of the offload section |
| | 76 | {{{ |
| | 77 | int main( void ) { |
| | 78 | double a[500000]; |
| | 79 | // static arrays are allocated on the stack; literal here is important |
| | 80 | int i; |
| | 81 | #pragma omp target device(0) map(from:a) |
| | 82 | #pragma omp parallel for |
| | 83 | for ( i=0; i<500000; i++ ) { |
| | 84 | a[i] = (double)i; |
| | 85 | } |
| | 86 | } |
| | 87 | }}} |
| | 88 | |
| | 89 | Transfer data to the device at the beginning of the offload section |
| | 90 | {{{ |
| | 91 | #pragma omp target device(0) map(to:a) |
| | 92 | }}} |
| | 93 | If not specified, do both. |
| | 94 | |
| | 95 | |
| | 96 | |
| | 97 | |
| | 98 | === Transfer dynamic arrays === |
| | 99 | |
| | 100 | You have to specify the range in the array. |
| | 101 | {{{ |
| | 102 | #pragma omp target device(0) map(from:phi[0:num * num]) |
| | 103 | }}} |
| | 104 | |
| | 105 | === Keeping Data on Device Memory === |
| | 106 | |
| | 107 | This will allocate a space for the array a on Device memory. |
| | 108 | {{{ |
| | 109 | #pragma omp target if (dev != num_dev) device(dev) map(to:a) map(from:a[dev:dev+1]) |
| | 110 | }}} |
| | 111 | The memory block for a on Device will be freed when the offload section ends. |
| | 112 | |
| | 113 | To keep data on Device memory, we have to allocate array on Device memory explicitly. |
| | 114 | {{{ |
| | 115 | void *data; |
| | 116 | #pragma omp target device(0) map(from:data) |
| | 117 | { |
| | 118 | double *vdata = new double[100]; |
| | 119 | #pragma omp parallel |
| | 120 | for (int i = 0 ; i < 100 ; i++) vdata[i]= i; |
| | 121 | data = (void *)vdata; |
| | 122 | } |
| | 123 | |
| | 124 | #pragma omp target device(0) map(to:data) |
| | 125 | { |
| | 126 | double *vdata = (double *)data; |
| | 127 | for (int i = 0 ; i < 100 ; i++){ |
| | 128 | std::cout << vdata[i] << std::endl; |
| | 129 | } |
| | 130 | } |
| | 131 | }}} |
| | 132 | Use void * pointer variable to store the address of array on Device memory. |
| | 133 | |
| | 134 | === Controlling data transfer === |
| | 135 | {{{ |
| | 136 | #pragma omp target data map(to:aArray[0:num], bArray[0:num]) map(alloc:cArray[0:num]) |
| | 137 | { // aArray, bArray, cArray are allocated on Device memory, and the elements of aArray & bArray are transferred from CPU to Device |
| | 138 | #pragma omp target // Use aArray,bArray,cArray on Device memory |
| | 139 | #pragma omp parallel for // Runs on Device |
| | 140 | for (int i = 0 ; i < num ; i++){ |
| | 141 | double sum = 0.0; |
| | 142 | for (int j = 0 ; j < num ; j++){ |
| | 143 | sum += aArray[i] * bArray[j]; |
| | 144 | } |
| | 145 | cArray[i] = sum; |
| | 146 | } |
| | 147 | |
| | 148 | |
| | 149 | //Compute ||C|| . Host gets the results. |
| | 150 | double cNorm = 0.0; |
| | 151 | #pragma omp target // Use aArray,bArray,cArray on Device memory |
| | 152 | #pragma omp parallel for reduction(+:cNorm) // Runs on Device |
| | 153 | for (int i = 0 ; i < num ; i++){ |
| | 154 | cNorm += cArray[i] * cArray[i]; |
| | 155 | } |
| | 156 | cNorm = std::sqrt(cNorm); // Runs on CPU |
| | 157 | std::cout << "||C||=" << cNorm << std::endl;// Runs on CPU |
| | 158 | |
| | 159 | |
| | 160 | // do the same on CPU |
| | 161 | cNorm = 0.0; |
| | 162 | #pragma omp target update from(cArray[0:num]) // Transfer cArray from Device to CPU |
| | 163 | #pragma omp parallel for reduction(+:cNorm) // Runs on CPU |
| | 164 | for (int i = 0 ; i < num ; i++){ |
| | 165 | cNorm += cArray[i] * cArray[i]; |
| | 166 | } |
| | 167 | |
| | 168 | |
| | 169 | cNorm = std::sqrt(cNorm); |
| | 170 | std::cout << "||C||=" << cNorm << std::endl; |
| | 171 | }// aArray, bArray, cArray on Device memory are freed |
| | 172 | }}} |
| | 173 | |
| | 174 | === Host-Device Parallelism === |
| | 175 | {{{ |
| | 176 | #include <iostream> |
| | 177 | #include <cmath> |
| | 178 | #include <omp.h> |
| | 179 | |
| | 180 | int main(const int argc, const char** argv) { |
| | 181 | omp_set_nested(1); |
| | 182 | int num_dev = omp_get_num_devices(); |
| | 183 | std::cout << "number of devices " << num_dev << std::endl; |
| | 184 | int a[10] = { 0 }; |
| | 185 | |
| | 186 | #pragma omp parallel firstprivate(num_dev) num_threads(num_dev + 1) |
| | 187 | #pragma omp single |
| | 188 | { |
| | 189 | for (int dev = 0; dev < num_dev + 1; dev++) { |
| | 190 | #pragma omp task firstprivate(dev) |
| | 191 | { |
| | 192 | #pragma omp target if (dev != num_dev) device(dev) map(to:a) map(from:a[dev:dev+1]) |
| | 193 | { |
| | 194 | #pragma omp parallel |
| | 195 | { |
| | 196 | #pragma omp master |
| | 197 | a[dev] = omp_get_num_threads(); |
| | 198 | } |
| | 199 | } |
| | 200 | } |
| | 201 | } |
| | 202 | } |
| | 203 | for (int i = 0; i < num_dev + 1; i++) { |
| | 204 | std::cout << a[i] << std::endl; |
| | 205 | } |
| | 206 | return 0; |
| | 207 | } |
| | 208 | }}} |
| | 209 | 'if' in pragma directive |
| | 210 | {{{ |
| | 211 | #pragma omp target if (dev != num_dev) device(dev) map(to:a) map(from:a[dev:dev+1]) |
| | 212 | }}} |
| | 213 | In this case, when dev is equal to num_dev, this directive is ignored. So next scope of code will run on Host (CPU). |